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Most machine learning algorithms involve many multiply–accumulate operations, which dictate the com-

putation time and energy required. Vector–matrix multiplications can be accelerated using resistive net-

works, which can be naturally implemented in a crossbar geometry by leveraging Kirchhoff’s current law

in a single readout step. However, practical computing tasks that require high precision are still very chal-

lenging to implement in a resistive crossbar array owing to intrinsic device variability and unavoidable

crosstalk, such as sneak path currents through adjacent devices, which inherently result in low precision.

Here, we experimentally demonstrate a precision-extension technique for a carbon nanotube (CNT) tran-

sistor crossbar array. High precision is attained through multiple devices operating together, each of

which stores a portion of the required bit width. A 10 × 10 CNT transistor array can perform vector–matrix

multiplication with high accuracy, making in-memory computing approaches attractive for high-perform-

ance computing environments.

Introduction

Deep neural networks (DNNs), which are broadly used in
recent artificial intelligence applications, achieve outstanding
performance when addressing traditionally difficult machine
learning problems, such as recognizing hand-written digits,
sounds, and images.1 However, the number of DNN math-
ematical computations required dramatically increases as the
network size increases. Unfortunately, conventional digital
computing systems are facing computational-speed limitations
owing to unavoidable data transfer inefficiency between pro-
cessors and off-chip memory. This is referred to as the von
Neumann bottleneck. Thus, computing-power efficiency
stands as a critical obstacle for DNNs in a broad range of prac-
tical applications, especially those related to the Internet of
Things and edge computing, which require a drastically lower
energy consumption.2

DNN computations typically involve a large number of
vector–matrix multiplication (VMM) operations, which is a
heavy burden on traditional digital computing systems
because their computational complexity grows as O(n2) and
cannot be easily reduced.3 To further accelerate and reduce the
energy consumption of VMM computations, resistive networks
with a crossbar geometry have been intensively studied using
emerging devices capable of analog conductance switching
(e.g., memristors).4–10 It was first demonstrated in the early
1950s11 that VMM computations can be naturally
implemented in a resistive crossbar array in a single readout
step based on Ohm’s law and Kirchhoff’s current law. Building
on early conceptual proposals for resistive crossbar arrays,12,13

recent advances in resistive crossbar arrays, which are gener-
ally called dot-product engines (DPEs),14,15 have enabled a
variety of practical calculation tasks, such as sparse coding cal-
culations,4 K-means data clustering,5 and differential equation
solvers10 (Fig. 1a).

However, many of the precision-related issues of DPEs are
not trivial and need to be accounted for, such as the series
resistances of wires, sneaky path currents, nonlinearity in the
current–voltage relationship of resistive devices, and other
unpredictable noise sources. Most importantly, the intrinsic
variability of resistive devices, that is, cycle-to-cycle and device-
to-device variations in their conductance modulation,16 leads
to the rapid degradation of VMM precision as the array size
increases.17,18 Unfortunately, this variability issue is common
to almost all nano-electronic devices, including the two-term-
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inal resistive switches (i.e., memristors) most commonly used
in DPEs. This problem cannot be easily overcome by further
optimizing the fabrication process or the materials used

because the physical mechanism of conductance modulation
is typically an atomic-level random process based on electro/
thermodynamics.19–21 A recent study10 has presented a smart

Fig. 1 (a) Conceptual schematic of a dot-product engine. A typical DNN computation involves many VMMs, and the dot-product engine allows for faster
VMM computations with a lower energy consumption. (b) Schematic of the DPE operations in a resistive crossbar array. The desired matrix element values
are represented by both the device conductance (Gi) and the input vector voltages (Vi). The output currents collected along each column (Iout) can yield
the results of a VMM computation. (c) Ideal and real analog conductance states in a resistive device, along with their distribution due to device variability.
(d) Measured conductance modulation behavior of the analog channel in a CNT transistor. Each pulse train consists of 120 SET and RESET pulses applied
to the gate (VSET = 6 V and VRESET = −6 V for 100 μs), followed by small, nonperturbative read voltage pulses (−1 V for 100 μs) within the given intervals. In
this case, VD and VS are set to VG/2 and 0 V, respectively (see ESI Note 4†). (e) Ten measured distinguishable conductance states (G0 to G9) of one CNT
transistor, where 100 iterations of write–read cycles were repeated for each conductance when the target Nvar = 5% in the write–verify feedback method.
Despite leveraging the write–verify process, a certain level of Nvar cannot be avoided, which is intrinsic to analog switching.
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breakthrough to the abovementioned problem. The intrinsi-
cally low precision of memristors can be extended through the
use of multiple crossbars to represent a given number of bits,
which can be used to perform high-precision VMM compu-
tations. Nevertheless, existing experimental demonstrations of
DPEs using passive memristor crossbar arrays have been
limited to relatively small sizes (<16 × 3)10 because eliminating
the crosstalk from adjacent devices such as those with sneak
path currents, which are a chronic problem of crossbar arrays,
is very difficult. Common two-terminal memristors cannot
effectively prevent unwanted current flow through unselected
devices without additional selector devices; thus, the resulting
voltage drops across the parasitic current paths critically
reduce the accuracy of the system.22,23

A robust mapping scheme that allows for conversion from
each matrix element (i.e., real numbers) into device conduc-
tance or an input voltage signal is essential for improving the
calculation accuracy and efficiency of VMM computations,
which should have tolerance to the effects of device variability
and the intrinsic drawbacks of crossbar arrays. We recently
developed a carbon nanotube (CNT) synaptic transistor24,25

that can eliminate the abovementioned limitations of the
current memristor crossbar array technology. The resulting
larger conductance variation margin (ΔG) allows for storing a
larger bit width in a single device. In addition, the three indivi-
dually controllable terminals with a localized carrier-trapping
mechanism of the CNT transistor can effectively prevent cross-
talk between adjacent devices. High-precision VMM compu-
tations can be performed by using multiple devices to store
the required bit width and by leveraging a quantization
process that uses analog-to-digital circuitry (ADC). We demon-
strate VMM computations experimentally in 10 × 10 CNT tran-
sistor crossbar arrays, achieving 1 × 2 and 2 × 2 matrix multi-
plications without error.

Results and discussion

VMM computations can be performed in a crossbar array by
applying an input vector of voltage signals (Vi) to the rows of
the crossbar array (Fig. 1b). The resulting current signals (Iout)
are collected along the columns; thus, Iout reflects the summed
results of multiplying the input voltage by the device conduc-
tance (Gi) according to Kirchhoff’s current law. In the case of
our CNT transistor crossbar array (Fig. S1†), the input voltage
signal is applied to the drain electrode of each transistor (Vi =
VD) in the row direction, and the collected source currents
(∑IS) in the column direction represent the integrated multi-
plication results between the conductance (G) of each transis-
tor and VD (i.e., ∑IS = ∑VD·Gi). During the VMM computation,
a constant read voltage is applied to the gate electrode
(VG = −1 V), whereas different levels of SET/RESET voltages
(VSET and VRESET) are applied to the gate electrode to respect-
ively increase/decrease G when an updating G is required. This
adjustable G in the CNT transistor is due to the electron trap
states near the valence band provided by CNT-hydroxide com-

plexes at the SiO2/CNT interface,26 and details of this mecha-
nism and the associated retention/endurance properties are
discussed in ESI Note 1.†

The amplitude of Vi and G will correspond to the elements
of the matrix (i.e., the real number) that we want to calculate.
The mapping of matrix elements to Vi is a relatively easy task
using conventional high-precision digital-to-analog circuits
(DACs). On the other hand, the mapping of matrix elements to
G poses several issues that have to be addressed. Ideally, resis-
tive devices such as memristors have infinite internal conduc-
tance states, and thus any real number can be represented by
one of the device’s conductance values (Fig. 1c). However, the
precise adjustment of conductance is very challenging and
although several methods for precise adjustment have been
proposed,27–29 they require impractical and complex peripheral
circuitry with limited adjustment accuracy. This control limit-
ation results in inevitable conductance variation (i.e., normal-
ized variation Nvar = [Gmax − Gmin]/mean(G)). Consequently,
only finite conductance states that do not overlap with each
other (referred to as G0 to Gn in Fig. 1c) can be used. For
example, Fig. 2d shows the analog G modulation behavior of
our CNT transistor, in which G can be adjusted gradually by
repeatedly applying voltage pulses. However, as noted above,
this gradual change cannot guarantee an infinite number of
available conductance states. Despite exploiting the write–
verify feedback method27 (see Methods and ESI Note 2†), only
a finite number of conductance states, namely from G0 to G9

(nstate = 10), are available owing to unavoidable Nvar, as shown
in Fig. 1e (the reason why G0 is particularly lower than the
other states will be explained later). Although a higher nstate
could be achieved by lowering the predetermined range of the
target Nvar in the update–verify feedback method, the number
of required update–verify pairs would dramatically increase as
Nvar decreased, which would lead to an impractical efficient
energy consumption in VMM computations. Accordingly, a
robust mapping scheme capable of representing an infinite
real number (matrix element) with only a finite number of con-
ductance states is essential for accurate VMM computation.

A previously proposed robust mapping scheme uses a set of
multiple devices to store a portion of the required bit width.10

In principle, this scheme can represent an m-digit number
with a base-l number system, X = [xm xm−1 … x1]l, where xm is
the mth digit, xm−1 is the m − 1th digit, and so on, as shown in
Fig. 2a. Because X is in a base-l system, each digit (xi) is a
number between 0 and l − 1. X can be expressed as a linear
combination of each digit with a digit shifter as follows:

X ¼ lm�1xm þ lm�2xm�1 þ . . .þ l0x1 ¼
Xm

i¼1

li�1xi; ð1Þ

where l is a digit shifter, e.g., l1 and l2 denote single- and
double-digit shifters, respectively. Here, if the nstate of the resis-
tive device is equal to the value of l, then xi can be mapped to
one of the available conductance states. For example, if X =
[1734]10 and nstate = 10 (i.e., G0 to G9), each digit (x4, x3, x2,
and x1) can be expressed by the conductance state of four
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devices, i.e., G1, G7, G3, and G4, respectively. As a result, X =
[1734]10 can be represented as the total conductance of four
devices, i.e., X → 103G1 + 102G7 + 101G3 + 100G4. This scheme
provides a precise way to represent any real number using a set
of resistive devices with only a finite number of conductance
states. However, one more critical issue should be addressed.
As mentioned above, there is no way to accurately adjust the
device conductance as desired; any measured conductance
state, such as G1, is actually G1 + Nvar. Note that the effect of
Nvar is dramatically amplified by the digit shifter li−1.
Therefore, the measured conductance value needs to be quan-
tized before the digit-shift operation is carried out (Fig. 2b).
Otherwise, the error introduced by Nvar would degrade the pre-
cision of the final computation. Fortunately, the quantization
operation can be readily implemented in the existing circuitry
through the ADC, which enables this robust mapping scheme
to perform properly.

Fig. 3a shows a simple example of a multiplication oper-
ation using the proposed mapping scheme; two decimal inte-
gers, X and Y, are multiplied. In the following discussion, all X
and Y are assumed to be positive values; the sign determi-
nation process for the negative matrix element is discussed in
ESI Note 3.† Each number has a single digit (e.g., x1 = 8 and y1
= 4). Because these two numbers (X and Y) are assumed to be
decimal values in this example (i.e., l = 10), nstate should be 10.
In step 1, the amplitude of the input voltage (Vi) applied to the
row of the crossbar array is determined by an integer multiple
of the amplitude when y1 = 1. For example, if Vi is 0.1 V when
y1 = 1, then Vi will be 0.4 V when y1 = 4. In our CNT transistor
crossbar array, the maximum Vi is limited to 1 V because Vi is
applied to the drain electrode of each transistor. Accordingly,
y1 = 0, 1, … 9 correspond to Vi = 0 V, 0.1 V, … 0.9 V, respectively.
Similarly, the conductance of the device is adjusted according
to x1; G2 to G9 should be integer multiples of G1. For example,
if G1 is 1 μS when x1 = 1, then G8 will be 8 μS when x1 = 8. As
for the conductance variation margin (ΔG = Gmax/Gmin) of our

CNT transistor and as shown in Fig. 1d, x1 = 1, 2, … and 9
correspond to Gi = 1 μS, 2 μS, … and 9 μS, respectively. It
should be noted that G0 (10

−3 μS) should be as low as possible.
Although G0 represents x1 = 0, because the device conductance
cannot be exactly zero, lowering the value of G0 as much as
possible can accordingly reduce the resulting error. In step 2,
the multiplication result is obtained by measuring the output
current (Iout), which is the source current (IS) of the CNT tran-
sistor. In this example, a current of 0.4(G8 + Nvar) is measured.
The maximum measurable current is theoretically 0.9G9,
which is the result of 9 × 9 = 81, when x1 = 9 and y1 = 9. Based
on this fact, the linear relationship between x1,·y1 and Iout can
be determined, which determines the scale ratio R (see also
ESI Note 3†). In step 3, the actual multiplication result can be
inferred from the measured value of Iout, by rescaling Iout with
R. Unfortunately, owing to the several unpredictable noise
sources, such as series resistances in wires, sneaky path cur-
rents, and Nvar, the inferred multiplication result is still inac-
curate. In this example, the inferred result is 32 ± α, where α

refers to the error. Thus, in the last step, the error is elimi-
nated by using the ADC, and an accurate multiplication result
can finally be obtained.

This single-digit multiplication process can be easily
expanded to enable the multiplication of multidigit numbers.
We now present another example of a DPE operation (shown
in Fig. 3b) involving the multiplication of two decimal integers
X and Y, with each number having three digits. The only differ-
ence with the one-digit-number multiplication discussed
above is that the digit-shift operation is also performed.
Because the ADC eliminates the error during one-digit-number
multiplication operations, subsequent digit-shift operations
cannot produce any error. To physically implement this multi-
plication operation in the crossbar array (Fig. 3c), a set of resis-
tive devices representing the number X repeatedly occupy the
rows of the crossbar array as many times as the number of
digits of X, and each set is shifted by one column. Then,

Fig. 2 (a) The proposed mapping scheme consists of a set of multiple devices that store a portion of the required bit width and is applied for an
m-digit number in a base-l number system. (b) Without the quantization process performed by an ADC, the effect of Nvar is amplified, which leads to
error in DPE operation.
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voltage V1 corresponding to y1 is applied to the 1st row, and the
output currents in each column are accumulated via rescaling,
the ADC, and the digit shifter. When the equivalent process is
sequentially performed for the 2nd and 3rd rows, the final mul-
tiplication result Z can be obtained by adding the accumulated
results through the adder.

In fact, the above-discussed mapping scheme is applicable
to any type of resistive crossbar array; in other words, it is inde-
pendent of the device structure or conductance switching
mechanism of the resistive devices used in the crossbar array.
Nonetheless, our three-terminal CNT transistor has more
advantages for this mapping scheme than existing two-term-
inal memristors because of its larger ΔG and its capability to
eliminate crosstalk among adjacent devices. First, because
memristors generally have a ΔG below 10,30–33 nstate is inevita-
bly small and the subsequent gap between each conductance
state should be narrowed, which would result in Nvar being

more susceptible to DPE operation. Alternatively, when using
three-terminal resistive devices such as our CNT transistor or
NAND flash memory, ΔG is typically greater than 50 with
higher reliability. This larger ΔG allows for a greater nstate, and
thus a larger bit width can be stored in a single device.
Therefore, three-terminal resistive devices enable more accu-
rate and reliable VMM computations by simply lowering the
number of resistive devices needed. Secondly, the three indivi-
dually controllable terminals of the CNT transistor possess a
localized carrier trapping mechanism and can effectively
prevent crosstalk between adjacent devices (see ESI Note 4†).
By properly controlling the gate, drain, and source voltages, it
is possible to prevent unselected devices from being disturbed
by the update/reading processes of G in the adjacent selected
device (Fig. S4†); thereby, the three-terminal structure of the
transistor can easily eliminate unwanted current flows through
unselected devices without requiring an additional selector

Fig. 3 (a) First example of a DPE operation, in which two decimal integers X and Y are multiplied, with each number having a single digit (e.g., x1 = 8
and y1 = 4). (b) Second example of a DPE operation, in which the multiplication of two decimal integers X and Y can be expressed as a combination of the
multiplications of each digit using a digit shifter. (c) Schematic of the physical implementation of the DPE in a crossbar array with peripheral circuitry. The
input voltages corresponding to y1, y2, and y3 are sequentially applied. The outputs after rescaling and passing through the ADC and the digit shifter are
accumulated along each column. Finally, the multiplication result (Z) can be inferred from the summation of all the accumulated results.
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device or any intrinsic rectifying behavior in the resistive
devices, unlike the schemes presented in previous studies.34,35

We now demonstrate VMM computation experimentally
using a 10 × 10 CNT transistor crossbar array, achieving (1 × 2)
and (2 × 2) matrix multiplication (see ESI Note 5†). Because
nstate = 10 in our CNT transistor, all matrix elements are ran-
domly assigned decimal integers with three digits (the number

of digits was limited by the array size). Fig. 4a and b show the
experimental results of the VMM computation, in which a
total of 100 multiplication operations were performed. The
relative error of each multiplication was obtained. Note that
without the quantization process (Fig. 4a), the error always
occurred in the multiplication operations. This error can be
completely eliminated via the quantization process (Fig. 4b).

Fig. 4 Experimental result of (1 × 2) and (2 × 2) matrix multiplication. The output matrix has a size of (1 × 2); thus two matrix elements, Z1 and Z2,
are obtained. (a) The 100 examples of Z1 and Z2 obtained without the quantization process. (b) The 100 examples of Z1 and Z2 obtained with the
quantization process. Relative error is eliminated completely.

Fig. 5 (a) Percentage of accurate computations for 100 multiplication operations for different Nvar values. (b) Mean relative error for 100 multipli-
cation operations for different Nvar values.
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Consequently, the proposed precision-extension technique for
DPEs based on the above-described robust mapping scheme
and quantization process could be employed as a promising
DNN accelerator by performing high-precision VMM
computations.

The remaining issues to be addressed are how to control
Nvar and the effect of Nvar on the accuracy of VMM compu-
tations. As shown in Fig. 5a and b, error occurs even if the
ADC is used when Nvar becomes larger than 6% because each
conductance state (Gi + Nvar) is overlapped with other states.
There are several solutions to this issue. The easiest approach
is to lower the target Nvar value of the write–verify process.
However, as mentioned above, lowering the target Nvar requires
a larger number of write–verify pairs, which results in greater
energy consumption. Another approach is the optimization of
the conductance modulation behavior at the device level. In
two-terminal memristors, cycle-to-cycle or device-to-device
variation can be improved via engineering of the electrode
material, interfacial layer, doping, or resistive switching
material in order to reduce Nvar.

16,36 However, further optimiz-
ing the fabrication process or the materials used in memris-
tors cannot entirely eliminate Nvar because of the random
physical mechanism of analog conductance modulation. A
more practical approach is to increase ΔG. When using three-
terminal resistive devices, ΔG can be increased via engineering
of the floating gate.25 Thus, three-terminal resistive devices
have promising potential for accurate and energy-efficient DPE
operation.

Conclusion

We have experimentally demonstrated DPE operation in a CNT
transistor crossbar array that can compute vector–matrix multi-
plications. Despite the intrinsic low precision owing to device
variability, the precision-extension techniques discussed here
can effectively lead to completely error-free computations.
Furthermore, although the proposed techniques are equally
applicable to any type of resistive crossbar array, our three-
terminal CNT transistor exhibits more promising potential.
Although recent advances in both 1 transistor–1 memristor
structure-based arrays (1T1R arrays)37–39 and 1 selector–1 mem-
ristor structure-based arrays (1S1R arrays)40–42 can solve chronic
problems in the existing passive memristor crossbar array, a
unique advantage of our CNT transistor is its simpler structure,
as fewer materials and fabrication process steps are required
than when implementing 1T1R or 1S1R structure. Therefore,
although the existing memristors or 1T1R or 1S1R may have
better performance at the device level, our three-terminal synap-
tic transistor will be more advantageous in implementing and
operating highly integrated DPEs. The demonstrated computing
accuracy is acceptable for practical machine learning appli-
cations; the present work provides an experimental baseline for
future analog computing systems and demonstrates their poten-
tial for accelerating machine learning operations while requiring
a lower energy consumption.

Methods
Fabrication of CNT transistor crossbar array

CNT transistors were fabricated on p-doped rigid silicon sub-
strates with a thermally grown 50 nm thick SiO2 layer. We used
the local back-gate structure for the modulation of the chan-
nels in the CNT transistors. To form the local back-gate, a
20 nm thick Ti layer was deposited by e-beam evaporation and
patterned by a subsequent lift-off process. Next, a 40 nm thick
Al2O3 layer and a 10 nm thick SiO2 layer were deposited
sequentially as a gate insulator by atomic layer deposition.
Then, the top surface of the SiO2 layer was functionalized with
a 0.1 g mL−1 poly-L-lysine solution for 20 min to form an
amine-terminated layer, which acted as an effective adhesion
layer for the deposition of the CNTs. Then, the CNT network
channel was formed by immersing the chip into a
0.01 mg mL−1 99%-semiconducting CNT solution
(NanoIntegris, Inc.) for 8 min at an elevated temperature of
100 °C. Next, the source/drain electrodes consisting of Ti and
Pd layers (each 2 nm and 30 nm, respectively) were deposited
and patterned using conventional thermal evaporation and a
lift-off process, respectively. Finally, additional photolithogra-
phy and oxygen plasma etching steps were conducted to
remove unnecessary CNTs other than in the channel area, thus
isolating the devices from one another.

For the crossbar array, 80 nm thick Cu and 150 nm thick
SiOx were sequentially deposited and patterned for the metal
line and interlayer dielectric layer (ILD), respectively.

Update–verify process

To reduce the device variability, we used an update–verify tech-
nique to write and update the conductance of each device in
the crossbar. Specifically, each write operation is based on a
sequence of update–read pulse pairs, each pair including an
updating (SET or RESET) pulse and a subsequent READ pulse
(VG = −2 V, 100 μs) for verification purpose. Current from the
READ operation on a target cell is used to compare with a
target value and calculate an error. If the error is below a pre-
defined threshold, the operation is considered complete and
the process stopped, otherwise operations are taken based on
the sign of the error. For positive errors, a SET pulse (VG = 6 V,
100 μs) is applied to increase the device conductance, while
for negative errors, a RESET pulse (VG = −6 V, 100 μs) is
applied to decrease the device conductance. The procedure is
then repeated until the conductance reaches within a pre-
determined range of the target value (for example Nvar = 5%).
In the experimental implementation, the updating of device
conductance typically requires around 20 update–verify pairs
in a sequence.
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